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Quantum impurity problems

• They generically describe the behavior of a magnetic impurity 
embedded in an electronic host

• The impurity is a set of “orbitals” carrying local many-body 
interactions. It can exchange electrons with an uncorrelated
fermionic bath.

• Impurity models have a long history
e.g. the Kondo problem

• Lead to the development of models
and methods

Electronic 
bath

« Atomic »
problem with 
several orbitals

de Haas, van den Berg, 1936



The Anderson model

• A very successful model to understand magnetic impurities in a 
metallic host is the Anderson model

• Hamiltonian:

local many-body 
interaction

hybridization to
the bath

free bath states



Action for the Anderson model

• After integrating out the fermionic bath:

• Generic case (several orbitals or sites):

hybridization function: describes 
the transition between the bath 
and the orbital

non-interacting Green’s function

Remember: contains the information about the structure of the bath!



A difficult problem!

• The Anderson model is a many-body (correlated) problem with an 
infinite number of degrees of freedom! It has attracted a lot of 
interest and many techniques have been developed:

• (Semi) Analytical methods

– Bethe Ansatz, BCFT

– Non-crossing approximation

• Numerical algorithms

– Exact diagonalization

– Numerical renormalization group

– Density matrix renormalization group

– Continuous-time quantum Monte Carlo algorithms

• All have pros and cons!



• The dynamical mean-field theory makes an approximation of a 
lattice model using an auxiliary quantum impurity problem

Our goal: Solve the DMFT equations

Bath     

Anderson impurity model

A. Georges and G. Kotliar, PRB (1992)
A. Georges et al., RMP (1996)

The bath has to be set self-consistently

Action of auxiliary impurity model

Lattice Hubbard model



The DMFT aficionado wish list

• The impurity solver must compute the local Green’s function

• Bath can have a rich structure, be gapped
(insulators, superconductors)

• Structures appear at all scales (transfer of
spectral weight in the Mott transition)

• The impurity solver must be able to treat
many orbitals (e.g. realistic materials)

• The interaction Hamiltonian can be
generic (pair-hopping, spin flip terms)

• The model is studied in different
temperature regimes

• One would like to be able to have real-frequency spectra
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Continuous-time quantum Monte Carlo methods

• They have been a small revolution!

• They exist in different flavors:

– CT-INT: Interaction expansion

– CT-HYB: Hybridization expansion

– CT-AUX: Auxiliary-field formulation

• The underlying principle is the same for all these algorithms

– Write a series expansion of the partition function

– Sample the contributions stochastically (Monte Carlo)

– Compute quantities of interest (Green’s function, …)



Monte Carlo: a quick summary

• The Monte Carlo is a method to compute sums:

• The idea is to generate stochastically a large set of
such that the probability to find a given      is 

• The original sum is replaced by an average over the set 

• Note that    should be understood as a set of variables

• One can think of     as a “configuration” in a phase space

• Example: classical Ising model



Markov chain

• How do we generate configurations with the correct distribution?

• We don’t sample independent configurations, but generate a 
Markov chain:

• The transition probability         to go from configuration     to a 
configuration    must satisfy:

– Normalization:

– Ergodicity: one must be able to reach any configuration

– Stationary distribution, balance condition:

– Detailed balance (sufficient but not necessary):



Metropolis algorithm

• How do we get a transition probability satisfying these criteria?

• Proposal – rejection scheme:

– Propose a change with a chosen proposal rate

– Accept this proposal with a probability

– Otherwise don’t change the configuration

– The total transition rate is

• Metropolis algorithm:

• It satisfies the detailed balance and therefore the Markov chain will 
be distributed according to



A Metropolis Monte Carlo algorithm

Metropolis

initialize 
simulation

measures 
observables

propose update

YES

NO

update configuration

compute

leave configuration 
unchanged



The fermionic sign problem

• Imagine we want to compute this average:

• We would like to use …… as a probability. But what if it can be 
negative?

• We can use the absolute value instead:

• If signs alternate the denominator is very small and there is a big 
variance! Gets worse at low temperatures, big systems…

• Fermionic problems very often suffer this sign problem!



Continuous-time quantum Monte Carlo

• Partition function:

• Propose configurations/diagrams in a Markov chain:

• Accept these proposals with a rate (Metropolis) such that the 
diagrams appear with probability density

• From the generated configurations, compute the observables you 
are interested in

• The different versions of continuous-time Monte Carlo solvers 
correspond to different choices of writing the partition function



Getting a series expansion for the partition function

• Write the action in two parts

• Express the partition function as

• Using that

we get

This is an average over the states described by the action A. It 
generally involves sums and integrals over imaginary time and can 
have a diagrammatical representation.

We can solve this action

This is the “perturbation”
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Interaction-expansion CT-QMC

• We focus on the simplest Anderson model (can be generalized to 
multi-orbital problems)

• We want to derive an expansion around the non-interacting limit 
(expansion in the interaction)



Interaction expansion cont’d

• We work in the imaginary-time formalism

• The action for the Anderson model:

• The partition function can be written as

this will produce a time-ordered average over the non-interacting state

action of the non-interacting problem

“perturbation”



Interaction expansion cont’d

• We write a series expansion for the exponential

• At this stage we have a perturbation expansion for the partition 
function of the type:

• However there is an obvious sign problem!

average over the 
non-interacting state



Interaction expansion cont’d

• The trick is to rewrite the interaction differently

• We eventually get (up and down spins decouple)

• By tuning we can improve the sign problem a lot!

we absorb this term in 
the chemical potential



Interaction expansion cont’d

• In the end we have

• A Monte Carlo “configuration” is described by

• Now we need to find a way to compute the correlators

Sum over many (some 
continuous) variables

Product of two 
non-interacting 
averages



Computing the correlators

• The averages are on a non-interacting state. Therefore we can use 
Wick’s theorem

• With this definition of the Green’s function

we get

and



Monte Carlo elements

• MC sum:

• The configurations are diagrams of the perturbation expansion. 
They can be seen as a set of interaction vertices at different 
imaginary times with an auxiliary spin     at every vertex.

• The weight of every diagram is given by



Generating diagrams

• We need to create a Markov chain of diagrams

• We can propose any changes to go from one diagram to another. A 
simple solution is to use two “moves”:

• An insertion of a vertex: we pick a random imaginary time and 
insert a vertex with a spin randomly up or down (A)

• A removal of a vertex: pick a random vertex and remove it (B)

(A)(B)



Insertion of a vertex

• What is the acceptance rate?

• Accept move with:



Removal of a vertex

• What is the acceptance rate?

• Accept move with:



Measuring the Green’s function

• We know how to generate a distribution corresponding to the 
terms in the partition function

• Now we just need to find how to measure the Green’s function 
from this distribution

• We finally see that



Measuring the Green’s function cont’d

• We have

• The functional derivative eventually gives:

• So we see that we need to compute the following Monte Carlo 
average to get the Green’s function



Computational effort

• The effort comes from the calculation of the determinants and of 
the inverse matrix (needed for the Green’s function measure)

• It would be very slow to calculate them
from scratch at every move

• They can be updated quickly using the
Sherman-Morrison formula

• The computational effort grows in          
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Hybridization-expansion CT-QMC

• We focus on the simplest Anderson model (can be generalized to 
multi-orbital problems)

• We want to derive an expansion around the atomic limit 
(expansion in the hybridization)



Hybridization expansion cont’d

• We work in the imaginary-time formalism

• The action for the Anderson model:

• Rewrite the action as

action of the atomic problem

“perturbation”



• We write a series expansion for the exponential of the 
perturbation

• Again an average appears but this time over the atomic state!

• This time, we cannot use Wick’s theorem and those averages will 
have to be computed with

Hybridization expansion cont’d

average over the 
atomic state

Hamiltonian of the 
local problem



• Inserting the expression of the hybridization action we get

Hybridization expansion cont’d

Sum over many 
(continuous) variables

Trace involving 
both spin up and 
down operators

Product of 
hybridization 
functions



Hybridization expansion cont’d

• MC sum:

• Diagrams:

• Weight:

• Unfortunately these diagrams have alternating signs Þ problems!



Trick: resumming diagrams

• The idea is to resum diagrams into a determinant. We start from a 
diagram where                        and sum all the permutations of



Hybridization expansion Monte Carlo

• MC sum:

• Diagrams:

• Weight:



• New diagrams are generated with two “moves”:

• Insertion of an (anti)-link: chose a spin flavor and pick two random 
imaginary times such that there is no operator between them. 
Either construct a link (A) or an anti-link (B)

• Removal of a link: chose a spin flavor and remove a random link (C)

Generating diagrams

(A)

(B)
(C)



Insertion of an (anti)-link

• What is the acceptance rate for this move?

• Accept with probability:



Removal of a link

• What is the acceptance rate for this move?

• Accept with probability:



Measuring the Green’s function

• We know how to sample diagrams with weights corresponding to 
their contribution in the partition function.

• How do we get the Green’s function?

• Measure:



Measuring the Green’s function cont’d

• Each configuration give contributions for a discrete set of imaginary 
times:

• These contribution can be “binned” on a very fine imaginary-time 
grid. This induces high frequency noise in Matsubara frequencies



Measuring using Legendre polynomials

• Legendre polynomials are a basis to
express function defined over an
interval

• We can express the imaginary-
time Green’s function in this
basis

• The coefficients in this
basis decay very quickly

L. Boehnke et al., PRB (2011)



Legendre basis acting as a noise filter

• The noise in the Matsubara frequencies can be reduced by 
truncating the Legendre coefficients that are zero within their error 
bars

• A typical outcome of this procedure:



Computational effort

• Can the contribution of a diagram be computed quickly?

• Determinants can be updated quickly (Sherman-Morrison)

• For simple Hamiltonians, the trace is very easy

• Computational effort grows in          

overlap:



What about non density-density Hamiltonians?

• The hybridization expansion algorithm can be modified for generic 
Hamiltonians

• Configurations are a set of creation / destruction operators of 
different flavor on a single imaginary-time line

• The main drawback is that there is no longer a quick way to 
compute the trace

• Operators are matrices that must be multiplied and traced over all 
atomic states

• The number of these atomic states quickly becomes large with 
several orbitals



CT-INT versus CT-HYB

• CT-INT & CT-AUX: series in the interaction

– Many orbitals, weak coupling, high temperatures

– Mainly density-density Hamiltonians

– Average perturbation order

• CT-HYB: series in the hybridization function

– Good at low temperatures, strong coupling

– Can treat generic Hamiltonians

– Hard to treat many orbitals

– Average perturbation order is the kinetic energy



Pros and cons of the CT-QMC algorithms

• Pros:

– Faster than earlier algorithms like Hirsch-Fye

– Monte Carlo Þ can easily be parallelized

– Flexible Hamiltonians

– Good scaling with number of orbitals if density-density

• Limitations:

– Many orbitals difficult with generic Hamiltonian

– They are in imaginary time, so one needs to do analytical continuation, 
and this is a very delicate procedure!

– Note: some real-time algorithms have been developed

– Sign problem



Summary

• Continuous-time quantum Monte Carlo algorithms have allowed 
for progress in computing the properties of strongly-correlated 
systems

– Lower temperatures

– Generic Hamiltonians, new approaches (e.g cluster DMFT, …)

– Larger number of orbitals / sites

• The idea of the algorithms is to sample stochastically the diagrams 
of a series expansion of the partition function

• According to one’s need, different expansions can be used

• You will learn to use a CT-HYB solver during the hands-on

• There are still limitations (sign problem, speed, …) and more work 
has to be done!



Thank your for your attention!


