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Diagrammatic Monte Carlo

Diagrammatic Monte Carlo is a stochastic method that samples the connected diagrams of a perturbation
expansion

Concrete example: Hubbard model on infinite lattice (thermodynamic limit) and at equilibrium
ij i ic
Start from U = 0 and construct perturbation series in U for an observable A:

o0
A — Z n e.g. density, double occupation,
a”U Green’s function, ...
n=0

It is similar to the CT-INT but note that we have not written A as a fraction

First goal: compute the series coefficients a,,

Second goal: resum the series




Reminder about CT-INT (also called DDMC)

. . . . . Tre A
The CT-INT algorithm is computing physical properties from the ratio A = ~
Both the numerator and the denominator are written as a series in U
For the partition function we have
7 = Tre PH = J@[E, cle1ecl
We write the action of the system as § = 5, + S, where
P b p
.. Jo Jo : 0
lj l

and the Fourier transform of [Gy],(z — 7') is the non-interacting propagator

Gok,iw,) = -
W, + U — €



Reminder about CT-INT (also called DDMC)

Expanding the exponential we find

n p
J@[C c]e_SO[C ,C] Z ( U) 2 J' d’[l At 2 1 T(Tl)nl l(Tl) N, T(T )nl l(T)

0

[]5e-sl,

0

n p
— ZOZ ( U) Z J dTl...dTn <”i1T(Tl)ni1l(Tl)°"ninT(Tn)ninl(Tn)>

=ZOZ( ) Z j dr,...dtr, det D! det D}

We have used Wick’s theorem in the last line and D, = {[GO]U-(TZ- — Tj)} is an n X n matrix

One can find a similar expression for the numerator and eventually obtain

TrePA o, [ detDID} ol (&) U"

A: Z — — (=1 ol ng {(FI,TI),...,(I"”,TH)}
) | detDD; U

n=0 n!




Diagrammatic interpretation of CT-INT

In CT-INT, the numerator and denominator are both sampled and the ratio is taken in the end

The average perturbation order ~ fUN, where N is the number of sites
This makes it very difficult to address large systems (increasing perturbation order — worse sign)

Why is the perturbation order ~ SUN ?

From a Feynman diagrammatic point of view (taking the example A = G the Green function):

The observable is a ratio of two sums involving all Feynman diagrams connecting the interaction vertices



Disconnected diagrams and perturbation order

The Monte Carlo weight of a configuration with 7 vertices is given by its contributions to the partition function
It corresponds to the sum of all connected + disconnected diagrams living on the n vertices

Let us take two examples at order 6 ——

These two diagrams have the same weight 85

This means that the disconnected pieces 86

will be integrated over the entire @ 85
lattice 3 i 4

At order k, the dominant contribution will %
be the diagram with k pieces:

8 = Uny)(n,) 3@4

. (UNP* . . .
Therefore the largest weight ~ x which is consistent with a maximum at k ~ fUN




Linked cluster theorem and diagrammatic Monte Carlo

It seems clear that there is redundant information with disconnected diagrams

From the linked cluster theorem we know that the fraction

A =

1+8+88 ; @ +Q:9+Q:9...
eliminates the disconnected diagrams so that we can rewrite A as a sum of connected diagrams only

A:-—>—-+.->Q>-.+._>Q>Q>_.+._>.@->_.+...

Instead of sampling both terms of a fraction, we can also sample the series of connected diagrams

This is the essence of the diagrammatic Monte Carlo methods



Pros and cons of diagrammatic Monte Carlo

Sampling only connected diagrams can have several advantages:
Less redundancy, only the “physical” diagrams are sampled

The weight of a connected diagram depends on its extent

ou

Therefore the diagrams that contribute have vertices that remain n [&1p— -
close to each other

This allows to treat infinite lattices directly (thermodynamic limit)

But there is no free lunch:

In CT-INT, the sum of a factorial number of diagrams is computed with a single determinant

Can something like this be done for connected diagrams? Yes, but exponential cost

In CT-INT, the numerator and denominator are both entire functions of U. The corresponding series
therefore have infinite convergence radius

What about the series of the ratio? They have finite convergence radius in general
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The connected determinant algorithm (CDet)

How to efficiently compute the sum of all connected diagrams describing an observable



Sampling connected diagrams

How do we sample only connected diagrams? (z1,71)

A possibility is to do create a Markov chain of individual topologies (z )@ (29, 7)
1,71 2,72
e

This is the original DiagMC approach

: : : - - N.V. Prokofiev and B.\V.
Drawback: two diagrams on the same vertices may have different signs Svistunov, PRL (2007)

This leads to a sign problem and only about 6-7 orders can be computed

We can explicitly sum all connected diagrams for a given set of vertices

Drawback: this comes with a huge computational cost as it requires a factorial number of operations

It would be nice to use determinants as in the CT-INT

This is the idea of the CDet algorithm: it computes the sum Other approaches:
of all connected diagrams with an exponential effort - '

R. Profumo et al, PRB (2015)

K. Chen and K. Haule, Nat. Comm. (2019)
A. Taheridehkordi et al., PRB (2019, 2020)
J. Vucicevic et al., PRB (2020), PRR (2021)
M. Macek et al., PRL (2020)

R. Rossi, PRL (2017) )
A. Moutenet et al., PRB (2018); Simkovic and Kozik, PRB (2019)



Connected determinant algorithm (CDet)

Let us consider a set V = {(x{,7{), ..., (X, T,) } with n interaction vertices 4
We want to compute the sum C(V) of all connected diagrams living —

on these vertices C(V) =

We start from the product of determinants det D! det D

The elements of D, are Green functions connecting the vertices in V Sum of all connected

diagrams

The product of the determinants yields the sum of all connected and disconnected
diagrams living on V. We will denote it as D(V).

v

D(V) =detD]!detD} =

Sum of all diagrams, including
We now need to remove the disconnected diagrams disconnected



Connected determinant algorithm (CDet)

The trick is to note that any disconnected diagram is composed of:
A connected part involving some subset S C V

Another part with connected and/or disconnected diagrams involving the remaining V\ S

~. Connected diagram
S G

Some connected
or disconnected diagram

To generate all disconnected diagrams, it is enough to consider all subsets § C V and take the product of
The sum C(S) of all connected diagrams living on the vertices in S

The sum D(V'\\S) of all connected and disconnected diagrams living on the vertices in V\ S



Connected determinant algorithm (CDet)

We eventually obtain the formula

V V\S Sum of all connected
V diagram
Sum of all connected Sum of all diagrams, including Sum of all diagrams,
diagrams disconnected including disconnected

C(V) =D(V) = ) D(V\S) C(S)
&V R. Rossi, PRL (2016)

One starts by computing D(S) for all subsets S. This can be done in ©(2") operations.
Then the recursion is computed and all C(S) are obtained. This is done in O(3") operations.

Similar formulas allow one to filter out self-energy diagrams
A. Moutenet et al., PRB (2018); Simkovic and Kozik, PRB (2019)



CDet Monte Carlo

The Monte Carlo algorithm samples the coefficients a, of the series for A

A= alU" = a,=) CV)= )Y |CV)|sign(C(V))=~ ) sign(C(V))

VeQ, VeQ, VeMarkov
where €2 contains all the sets of n vertices
The sampling is implemented with a Metropolis-Hastings algorithm
The weight of a configuration V of vertices is | C(V) |

New configurations are proposed and then accepted or rejected as usual

The coefficient a, are estimated from the average sign

Unlike most quantum Monte Carlo algorithms, a single step is quite expensive

We do not have a ratio — we need to normalize the Markov chain. This is typically achieved by also
sampling another quantity (like a,) they we know analytically.

There are different variants, e.g. some allow one to compute all a,’s in the same run
F. Simkovic, R. Rossi, arXiv (2021)
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Resummation of the series

Resummation techniques and freedom to choose the starting point of the perturbation expansion



Resummation of the series

We have a way to compute the coefficients. In practice, one can compute ~ 10-13 coefficients

Typical example for Hubbard model with U =4t t'=03 u=0 T =0.5

Partial sum of the antinodal (7,0) self-energy

> B P
1 1
w = O

_0'71 2 3 4 5 6 7

perturbation order k



Resummation of the series

The partial series do not always nicely converge! n(U ) in the Hubbard atom
Unlike CT-INT, the function A(U) may have poles in the
complex-U plane How to

| _ evaluate the
One needs to be able to evaluate the function beyond its series here?
radius of convergence 1

| ImU
How does one resum the series?
Option 1: Conformal maps, Padé approximants, integral
approximants, ...
Option 2: Generate new series with the freedom to choose Convergence
the starting point of the series expansion _ radius
1 ~ 1
GO — — GO —

W, + U — € W, + U — €,—0



Example: standard resummation tools

Conformal maps: new series is obtained from a change of variable

Z U (a))”

n

Original

10.0
1.00
%3 0.75
2.0 0.50
2.5 0.25
0.0 0.00
-2.5 -0.25
—5.0 -0.50
_75 -0.75
-1.00

-10.0 Y
-10 -3 10

Zba)

Conformal-mapped

A=20.00

Y Y Y
—-1.0 0.5 0.0 0.5 1.0

Aw
Ulw) =
/ (I — o)1+ w)
Partial sum



Freedom in the starting point of the perturbation series

Optimize series convergence with modified bare propagator

1 ~ 1
W, + U — € lw, + U —€—a

The series must be changed to compensate for the a shift. This turns out to be easy.

Self energy for a = — 2.000 Partial sum
' . :

------
-
- \\

Imz ( l a)o) /,’ \\\ —0.6 -
Hubbard atom .. / * -




Freedom In the starting point of the perturbation series

For the previous example on the Hubbard model

Im2(iw,) Im2(iw,)
—0.2r — — - —0.2¢ | | |
E _ ; _____ ‘_x‘.é__-‘_.‘ - --=-=
—0.3f ~0.3F ) -
—0.4} —0.4 -
F----- % - - - --
—0.5F I S G e B e
—0.6]{*® n=0 no shift - —0.6[{*—® n=0 X = 1.48 _
| ¥V—¥ n=1 | | V—¥ n=1
e n=3 i |&® n=3
. I I I I . I I I I
01 2 3 4 5 6 7 01 2 3 4 5 6 7
perturbation order perturbation order

A good choice for a helps a lot. Often mean-field is a good starting point
Profumo et al., PRB (2015)

There are many other choices that have been explored W.Wu et al., PRB (2017)
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- An illustration of CDet

Self-energies and pseudogap in the doped Hubbard model



U=4, n=0.9/77

A(k)

Pseudogap physics in the doped Hubbard model

I'=02,U=4,n=0.977
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Characterization of the different regimes
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Pseudogap and connection with stripe-ordered ground state
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Handshake with ground-state approaches
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Handshake with ground-state approaches
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The fate of the pseudogap at zero temperature
black: ground-state result seems to be a stripe-ordered state
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summary

Diagrammatic Monte Carlo algorithms directly sample the connected diagrams describing an observable
They can be used directly in the thermodynamic limit (infinite lattice)
The CDet algorithm computes the sum of all connected diagrams at a cost O(n°) at order n

In practice about 10-13 orders can be computed

Resumming the series can be challenging because of the presence of poles in the complex-U plane
Results have been obtained in the intermediate to strong coupling regime of the Hubbard model
Pseudogap physics

Spin and charge susceptibilities

Magnetic phase transitions, etc.

But more work is needed to be able to compute more coefficients and especially to find robust ways to do the
resummation of the series



