Introduction to diagrammatic Monte Carlo

Summer School on Computational Quantum Materials Jouvence, May 28, 2024

COLLÈGE **DE FRANCE** 1530 -

https://mferrero.github.io/jouvence_2024

Michel Ferrero Ecole Polytechnique and Collège de France

Diagrammatic Monte Carlo

- expansion
- Concrete example: Hubbard model on infinite lattice (thermodynamic limit) and at equilibrium

$$H = \sum_{ij} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow} - \mu \sum_{i\sigma} n_{i\sigma}$$

Start from U = 0 and construct perturbation series in U for an observable A: •

$$\mathsf{A} = \sum_{n=0}^{\infty} a_n U^n \quad \blacktriangleleft$$

- It is similar to the CT-INT but note that we have not written A as a fraction
- <u>First goal</u>: compute the series coefficients a_n
- <u>Second goal</u>: resum the series

Diagrammatic Monte Carlo is a stochastic method that samples the connected diagrams of a perturbation

e.g. density, double occupation, Green's function, ...

Introduction to diagrammatic Monte Carlo

- **Overview of diagrammatic Monte Carlo** • The idea of diagrammatic Monte Carlo, differences with respect to CT-INT / DDMC
- The connected determinant algorithm (CDet) • How to efficiently compute the sum of all connected diagrams describing an observable
- **Resummation of the series** • Resummation techniques and freedom to choose the starting point of the perturbation expansion
- An illustration of CDet Self-energies and pseudogap in the doped Hubbard model

Introduction to diagrammatic Monte Carlo

- **Overview of diagrammatic Monte Carlo** The idea of diagrammatic Monte Carlo, differences with respect to CT-INT / DDMC
- The connected determinant algorithm (CDet) How to efficiently compute the sum of all connected diagrams describing an observable
- **Resummation of the series** Resummation techniques and freedom to choose the starting point of the perturbation expansion
- An illustration of CDet Self-energies and pseudogap in the doped Hubbard model

Reminder about CT-INT (also called DDMC)

The CT-INT algorithm is computing physical proper

- Both the numerator and the denominator are written as a series in U•
- For the partition function we have •

$$Z = \mathrm{Tr}e^{-\beta H} = \int \mathcal{D}$$

We write the action of the system as $S = S_0 + S_U$ where •

$$S_{0} = \sum_{ij} \int_{0}^{\beta} \int_{0}^{\beta} \bar{c}_{i}(\tau) \left[G_{0}^{-1}\right]_{ij}(\tau - \tau') c_{j}(\tau') d\tau d\tau' \qquad S_{U} = U \sum_{i} \int_{0}^{\beta} n_{i\uparrow}(\tau) n_{i\downarrow}(\tau) d\tau$$

and the Fourier transform of $[G_0]_{ij}(\tau - \tau')$ is the non-interacting propagator

$$G_0(k, i\omega_n) =$$

rties from the ratio
$$A = \frac{Tre^{-\beta H}\hat{A}}{Z}$$

 $\sqrt{[\bar{c},c]}e^{-S[\bar{c},c]}$

$$\frac{1}{i\omega_n + \mu - \epsilon_k}$$

Reminder about CT-INT (also called DDMC)

Expanding the exponential we find

•

$$Z = \int \mathscr{D}[\bar{c}, c] e^{-S_0[\bar{c}, c]} \sum_{n=0}^{\infty} \frac{(-U)^n}{n!} \sum_{i_1, \dots, i_n} \int_0^\beta d\tau_1 \dots d\tau_n n_{i_1\uparrow}(\tau_1) n_{i_1\downarrow}(\tau_1) \dots n_{i_n\uparrow}(\tau_n) n_{i_n\downarrow}(\tau_n)$$

$$= Z_0 \sum_{n=0}^{\infty} \frac{(-U)^n}{n!} \sum_{i_1, \dots, i_n} \int_0^\beta d\tau_1 \dots d\tau_n \left\langle n_{i_1\uparrow}(\tau_1) n_{i_1\downarrow}(\tau_1) \dots n_{i_n\uparrow}(\tau_n) n_{i_n\downarrow}(\tau_n) \right\rangle_0$$

$$= Z_0 \sum_{n=0}^{\infty} \frac{(-U)^n}{n!} \sum_{i_1, \dots, i_n} \int_0^\beta d\tau_1 \dots d\tau_n \det D_n^{\uparrow} \det D_n^{\downarrow}$$

- We have used Wick's theorem in the last line and I
- One can find a similar expression for the numerator and eventually obtain •

$$D_n^{\sigma} = \left\{ [G_0]_{ij}(\tau_i - \tau_j) \right\}$$
 is an $n \times n$ matrix

Diagrammatic interpretation of CT-INT

- In CT-INT, the numerator and denominator are both sampled and the ratio is taken in the end
- The average perturbation order $\sim \beta UN$, where N is the number of sites
- This makes it very difficult to address large systems (increasing perturbation order \rightarrow worse sign)
- Why is the perturbation order $\sim \beta UN$?
- From a Feynman diagrammatic point of view (taking the example A = G the Green function):

The observable is a ratio of two sums involving all Feynman diagrams connecting the interaction vertices

Disconnected diagrams and perturbation order

- It corresponds to the sum of all connected + disconnected diagrams living on the *n* vertices
- Let us take two examples at order 6
- These two diagrams have the same weight
- This means that the disconnected pieces will be integrated over the entire lattice
- At order k, the dominant contribution will be the diagram with k pieces:

$$= U \langle n_{\uparrow} \rangle \langle n_{\downarrow} \rangle$$

Therefore the largest weight $\simeq \frac{(UN\beta)^k}{k!}$ which is consistent with a maximum at $k \simeq \beta UN$

The Monte Carlo weight of a configuration with *n* vertices is given by its contributions to the partition function

Linked cluster theorem and diagrammatic Monte Carlo

- It seems clear that there is redundant information with disconnected diagrams
- From the linked cluster theorem we know that the fraction

eliminates the disconnected diagrams so that we can rewrite A as a sum of connected diagrams only

- Instead of sampling both terms of a fraction, we can also sample the series of connected diagrams
- This is the essence of the diagrammatic Monte Carlo methods

$$+ \cdots] \times \left[1 + 2 + 2 + 2 + 2 + \cdots \right]$$

$$+ 2 + 2 + 2 + \cdots$$

Pros and cons of diagrammatic Monte Carlo

- Sampling only connected diagrams can have several advantages:
- Less redundancy, only the "physical" diagrams are sampled
- The weight of a connected diagram depends on its extent
- Therefore the diagrams that contribute have vertices that remain close to each other
- This allows to treat infinite lattices directly (thermodynamic limit)
- But there is no free lunch:
 - In CT-INT, the sum of a <u>factorial number of diagrams is computed with a single determinant</u>
 - Can something like this be done for connected diagrams? Yes, but exponential cost
 - In CT-INT, the numerator and denominator are both entire functions of U. The corresponding series • therefore have <u>infinite convergence radius</u>
 - What about the series of the ratio? They have finite convergence radius in general

Introduction to diagrammatic Monte Carlo

- **Overview of diagrammatic Monte Carlo** The idea of diagrammatic Monte Carlo, differences with respect to CT-INT / DDMC
- The connected determinant algorithm (CDet) How to efficiently compute the sum of all connected diagrams describing an observable
- **Resummation of the series** Resummation techniques and freedom to choose the starting point of the perturbation expansion
- An illustration of CDet Self-energies and pseudogap in the doped Hubbard model

Sampling connected diagrams

- How do we sample only connected diagrams?
- A possibility is to do create a Markov chain of individual topologies
 - This is the original **DiagMC** approach
 - <u>Drawback</u>: two diagrams on the same vertices may have different signs
 - This leads to a sign problem and only about 6-7 orders can be computed
- We can explicitly sum all connected diagrams for a given set of vertices
 - <u>Drawback</u>: this comes with a huge computational cost as it requires a factorial number of operations
- It would be nice to use determinants as in the CT-INT
- This is the idea of the CDet algorithm: it computes the sum of all connected diagrams with an exponential effort

R. Rossi, PRL (2017)

A. Moutenet et al., PRB (2018); Simkovic and Kozik, PRB (2019)

N.V. Prokofiev and B.V. Svistunov, PRL (2007)

Other approaches:

- R. Profumo et al, PRB (2015)
- K. Chen and K. Haule, Nat. Comm. (2019)
- A. Taheridehkordi et al., PRB (2019, 2020)
- J. Vucicevic et al., PRB (2020), PRR (2021)
- M. Maček et al., PRL (2020)

Connected determinant algorithm (CDet)

- Let us consider a set $V = \{(x_1, \tau_1), \dots, (x_n, \tau_n)\}$ with *n* interaction vertices
- We want to compute the sum C(V) of all connected diagrams living on these vertices
- We start from the product of determinants det D_n^{\uparrow} det D_n^{\downarrow}
- The elements of D_n^{σ} are Green functions connecting the vertices in V
- The product of the determinants yields the sum of all connected and disconnected diagrams living on V. We will denote it as $\mathbf{D}(V)$.

$$\mathbf{D}(V) = \det D_n^{\uparrow} \det$$

We now need to remove the disconnected diagrams

Sum of all connected diagrams

Sum of all diagrams, including disconnected

Connected determinant algorithm (CDet)

The trick is to note that any disconnected diagram is composed of:

A connected part involving some subset $S \subsetneq V$

•

Another part with connected and/or disconnected diagrams involving the remaining $V \setminus S$

Some connected or disconnected diagram

- The sum C(S) of all connected diagrams living on the vertices in S
- The sum $\mathbf{D}(V \setminus S)$ of all connected and disconnected diagrams living on the vertices in $V \setminus S$

- To generate all disconnected diagrams, it is enough to consider all subsets $S \subsetneq V$ and take the product of

Connected determinant algorithm (CDet)

We eventually obtain the formula

•

- One starts by computing $\mathbf{D}(S)$ for all subsets S. This can be done in $\mathcal{O}(2^n)$ operations. •
- Then the recursion is computed and all $\mathbb{C}(S)$ are obtained. This is done in $\mathcal{O}(3^n)$ operations.
- Similar formulas allow one to filter out self-energy diagrams

A. Moutenet et al., PRB (2018); Šimkovic and Kozik, PRB (2019)

CDet Monte Carlo

The Monte Carlo algorithm samples the coefficients a_n of the series for A

$$\mathsf{A} = \sum_{n} a_{n} U^{n} \quad \rightarrow \quad a_{n} = \sum_{V \in \Omega_{n}} \mathbf{C}(V) =$$

where Ω_n contains all the sets of *n* vertices The sampling is implemented with a Metropolis-Hastings algorithm

- The weight of a configuration V of vertices is $|\mathbf{C}(V)|$
- New configurations are proposed and then accepted or rejected as usual
- The coefficient a_n are estimated from the average sign
- Unlike most quantum Monte Carlo algorithms, a single step is quite expensive
- We do not have a ratio \rightarrow we need to normalize the Markov chain. This is typically achieved by also sampling another quantity (like a_0) that we know analytically.
- There are different variants, e.g. some allow one to compute all a_n 's in the same run

 $\sum |\mathbf{C}(V)| \operatorname{sign}(\mathbf{C}(V)) \simeq \sum \operatorname{sign}(\mathbf{C}(V))$ V∈Markov $V \in \Omega_n$

F. Šimkovic, R. Rossi, arXiv (2021)

Introduction to diagrammatic Monte Carlo

- **Overview of diagrammatic Monte Carlo** The idea of diagrammatic Monte Carlo, differences with respect to CT-INT / DDMC
- The connected determinant algorithm (CDet) How to efficiently compute the sum of all connected diagrams describing an observable
- **Resummation of the series** Resummation techniques and freedom to choose the starting point of the perturbation expansion
- An illustration of CDet Self-energies and pseudogap in the doped Hubbard model

Resummation of the series

- We have a way to compute the coefficients. In practice, one can compute \sim 10-13 coefficients •
- Typical example for Hubbard model with U = 4t

$$t' = 0.3$$
 $\mu = 0$ $T = 0.5$

Resummation of the series

- The partial series do not always nicely converge!
- Unlike CT-INT, the function A(U) may have poles in the • complex-U plane
- One needs to be able to evaluate the function beyond its radius of convergence
- How does one resum the series?
- <u>Option 1:</u> Conformal maps, Padé approximants, integral approximants, ...
- <u>Option 2:</u> Generate new series with the freedom to choose the starting point of the series expansion

$$G_0 = \frac{1}{i\omega_n + \mu - \epsilon_k} \quad \rightarrow \quad \tilde{G}_0 = \frac{1}{i\omega_n + \mu - \epsilon_k}$$

in the Hubbard atom $\mathcal{N}($

 $\operatorname{Im} U$

Example: standard resummation tools

•

Freedom in the starting point of the perturbation series

Optimize series convergence with modified bare propagator

•

•

$$G_0 = \frac{1}{i\omega_n + \mu - \epsilon_k} \quad \rightarrow \quad \tilde{G}_0 = \frac{1}{i\omega_n + \mu - \epsilon_k - \alpha}$$

The series must be changed to compensate for the α shift. This turns out to be easy.

Freedom in the starting point of the perturbation series

For the previous example on the Hubbard model

•

- A good choice for α helps a lot. Often mean-field is a good starting point
- There are many other choices that have been explored

Profumo et al., PRB (2015) W.Wu et al., PRB (2017)

Introduction to diagrammatic Monte Carlo

- **Overview of diagrammatic Monte Carlo** The idea of diagrammatic Monte Carlo, differences with respect to CT-INT / DDMC
- The connected determinant algorithm (CDet) How to efficiently compute the sum of all connected diagrams describing an observable
- **Resummation of the series** Resummation techniques and freedom to choose the starting point of the perturbation expansion
- An illustration of CDet Self-energies and pseudogap in the doped Hubbard model

Pseudogap physics and the doped Hubbard model

Hole doping, p

- Very rich phase diagram
- Can the single band Hubbard model reproduce ulletsome of the features in the phase diagram?
- In particular, pseudogap region very intriguing, seen ۲ in several families of strongly correlated materials
- What is its relation with superconductivity? ullet
- Is there something like a zero temperature • pseudogap state?

Spectral properties from CDet in the doped Hubbard model

Pseudogap region, weak and strong coupling

Characterization of the different regimes

n=0.866 U=4, 4, n=0.977 **I** =7, n=0.855 \supset =0.958

 \supset

ipe-ordered ground state

2

M. Qin et al, PRX (2020) S. Sorella, arXiv (2021) Hao Xu et al., arXiv (2021)

Handshake with ground-state approaches

Extrapolation of the pseudogap region to zero temperature

Handshake with ground-state approaches

seems to be a stripe-ordered state when there

- Diagrammatic Monte Carlo algorithms directly sample the connected diagrams describing an observable
- They can be used directly in the thermodynamic limit (infinite lattice)
- The CDet algorithm computes the sum of all connected diagrams at a cost $\mathcal{O}(n^3)$ at order n
- In practice about 10-13 orders can be computed
- Resumming the series can be challenging because of the presence of poles in the complex-U plane Results have been obtained in the intermediate to strong coupling regime of the Hubbard model
- - Pseudogap physics
 - Spin and charge susceptibilities
 - Magnetic phase transitions, etc.
 - But more work is needed to be able to compute more coefficients and especially to find robust ways to do the resummation of the series

Summary