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Motivation: quantum impurity problems

Historical importance of guantum impurity problems and algorithmic developments
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Quantum impurity problems

They generically describe the behavior of a magnetic impurity
embedded in an electronic host

The impurity is a set of “orbitals” carrying local many-body
Interactions. It can exchange electrons with an uncorrelated

fermionic bath.

« Atomic » :
problem with Electronic
several orbitals bath

€

Impurity models have a long history, e.g. the Kondo problem

Lead to the development of models and methods
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The Anderson model

A very successful model to understand magnetic impurities in a metallic host is
the Anderson model

Hamiltonian: U
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i €
p(e) “ A
“\VkO'
Cho §

H = Z eod:f,da + Ungyng; + Z Vkaczadg + h.c. + Z ekaczackg
k,o

o="T,l k,o )
RN S S ) S —
local many-body hybridization to free bath

Interaction the bath states



The Anderson model

When U = 0, the Anderson model can be solved

Its non-interacting Green function is then

. 1
Goliwn) = iwy, — €g — A(iwp,)

hybridization function: describes
where the transition between the bath
‘Vk ‘2 and the orbital

Aliwn) = Z Wy — €k
I n

The Anderson impurity model is completely determined by the interaction U and
the hybridization function A

The model can be generalized (more orbitals, sites, etc.)



A difficult problem!

The Anderson model is a many-body (correlated) problem with an infinite number of degrees
of freedom! It has attracted a lot of interest and many techniques have been developed:

(Semi) Analytical methods
— Bethe Ansatz, BCFT
— Non-crossing approximation
Numerical algorithms
— Exact diagonalization
— Numerical renormalization group
— Tensor network approaches (DMRQG)
— Continuous-time quantum Monte Carlo algorithms
— And many more...

All have pros and cons!



Our goal: solve the DMFT equations

A. Georges and G. Kotliar, PRB (1992)
A. Georges et al., RMP (1996)

The dynamical mean-field theory makes an approximation of a lattice model using an
auxiliary quantum impurity problem

Lattice Hubbard model

H = Z ekc;;ck + UZ”@'T”N
k .

1

Anderson impurity model

* { Bath G J

The bath has to be set self-consistently



The DMFT aficionado wish list

The impurity solver must compute the local Green function and more

Bath can have a rich structure, be gapped

(insulators, superconductors) 2—_/\_
Structures appear at all scales (transfer of il _
spectral weight in the Mott transition) _/\_/\_/\
The impurity solver must be able to treat - |
many orbitals (e.g. realistic materials) i _/-/\_/\_/\ }
The interaction Hamiltonian can be T /,\/\_ﬂ_/\/\
generic (pair-hopping, spin flip terms) 0 » -‘

The model is studied in different AN

temperature regimes 4 2 o 2

-ImG

One would like to be able to have real-frequency spectra




Continuous-time guantum Monte Carlo algorithms

Continuous-time quantum Monte Carlo (CT-QMC) methods

Introduction to the idea of CT-QMC methods and their different versions



Continuous-time gquantum Monte Carlo methods

150 .

They have been a small revolution!

They exist in different flavors:

Matrix Size, .

Lh
o

— CT-INT: Interaction expansion

— CT-HYB: Hybridization expansion

-]
-]
I
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..". = Weak Coupling Algorithm
A 4 Hybridization Expansion
e- @ Hirsch Fye

— CT-AUX: Auxiliary-field formulation

The underlying principle is the same for all these algorithms

— Write a series expansion of the partition function and physical observables

— Sample the contributions stochastically (Monte Carlo)

— Compute quantities of interest (Green function, ...)




Continuous-time gquantum Monte Carlo methods

Different version correspond to different ways to construct your perturbation series

H = Ho + H,
CT-INT (and also CT-AUX)

Hy is the non-interacting system and H; the Coulomb interaction

We want to compute Z = Z a, U" computing the a, involves many

" integrals that we will compute

using a Monte Carlo algorithm
CT-HYB

H, is the “atomic limit” and H; is the hybridization to the bath A

We want to compute " Z = Z a A"

n



Continuous-time guantum Monte Carlo algorithms

The interaction-expansion algorithm (CT-INT)

Write a perturbation series expansion in the Coulomb interaction



Interaction expansion CT-QMC

We focus on the simplest Anderson model (can be generalized to multi-orbital
problems)

We want to derive an expansion around the non-interacting limit (expansion in the
interaction)

T
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Interaction expansion CT-QMC

We want to write a series expansion in U. We have H = H, + H; with H; = Un;n,

We start from the equation of motion for the evolution operator

0.0(t,7) = —H;(T)U(T, 7")
where we have used the interaction picture

A(T) = ™0 Ae~THo Interaction picture

Integration the equation above yields
-

U(r, ) =1 —/ dry H/(t)U(7y, T



Interaction expansion CT-QMC

Repeating the procedure:

u(r, 7')—1—/ dT /—//(T1)+/ C/T1/ d1o Hi (1) H(12)
/ dﬁ/ CI”TQ/ drs H () H (1) H (T3) + ..

Pushing the integration limits to 7 and introducing the time-ordering operator 1

R T 1 T T . .
O(t, 7 = 1—/ dry Hi () 2'_/ d’rl/ dm T [/_//(’Tl)/_//(’rg)}

3| /,T dT /,T o /,T drs I [HI(Tl)/‘//(Tz)/‘//(Ts)}
U(r, ") = Z (_1|)n /T/T dTy - - /TT A7y Tr [Hi(T1) - - Hi ()]

n'

/

n=0




Interaction expansion CT-QMC

We want to compute the partition function

Z = Tre=BHo J(3, 0)

Remembering that the average value of an operator in the non-interacting
system is

1
(A)y = —Tre Pt A
4

we obtain

A X g Nn\n rB G
2= (0B.0), =Y S [Cdrie [ dm (T i) i),



Interaction expansion CT-QMC

The final step is to use Wick’s theorem to compute the non-interacting averages

) X I n\n rB G
2= (0E.0), =Y S [Cdrie [ am (T i) i),

Z - — (=U)" [P .
— =(0(8.,0)), :Z( ) / dTl---/ dt, det My det M|™
0 0

£ — !
GOO’(O_) GOU(Tl —72) G00(71 —Tn) .
Goo (T2 — T1) Gos(07) .. Goo(T2 — Tp) Gal] __
M = - . | . o(iwn) jwy, — €g — N(iw,,)

GOO’(TI’) — 7_1) GOU(Tn — 7_2) e GOO’(O_)



Interaction expansion CT-QMC

We have an expression for Z as a series in powers of U"

/ ~ > —U)" P g n n
—:<U(6,O)>O:Z( ) / d’rl---/ dr, det My det M|"™
0 0

4 n!
0 n=0

Similar derivations lead to the following expression for the Green function

Go(iwn) = Goo(iwy) — Goo (1wp) K (1w,)Goo (1wn)

n! 1/

Soto S Jy dTiee- [y dTy det MY det M) ( ; elun(m=) |

Ko(lw,) =

oo (=U)" P B
S S P dr - [V dTy det MY det M)

n!

We want to compute the integrals stochastically



Monte Carlo elements

n | -1
520 EUE (Bdr o [P dr, det M#”) det Mi”) ( efwn(mi=m) | A5 )

n! 1 i

Ko(lw,) =

S E [Pt [V dTy det MY det M)™

n!

M C 8 G
Monte Carlo sum Z = Z/ dTq - / dT,
C n 0 0

Configuration C=1{n"TL, ..., Tn} / Very different from the Boltzmann weight!
e | (—U)" () (n)
Probability distribution  po(C) = |w(C)| with w(C) = - det M det M,
Compute _ - 1 -1
¢y e M| sign(w(C))
Ko(iwg,) = J

ZE”Csig_nw(_c»



The termionic sign problem

Imagine we want to compute this average:

2 W) f(2)
2 W()

We use the absolute value of w(x) as a probability

>, lw(@)|f(z)sign(w(z)) S, f(@)sign(w(z;))

()=

<f> — : ~ i_lN .
> (w(z)[sign(w(z)) S sign(w(z;))
If signs alternate the denominator is very small and there is a big variance!

The average sign typically decreases exponentially with temperature, system
Size, etc.

Fermionic problems very often suffer from this sign problem!



Sign problem in interaction expansion CT-QMC

z . = (=)™ (P . (1) (n)
> — <U(,5, O)>O — Z /o dTy - ”/o dTp, det Mo~ det M,

- The sign will alternate with n and it will lead to a terrible sign problem. But there

IS a trick
U U 1
Unsng = o Z (nT — asT) (n¢ — as¢> F S (nT —I—no + const QUso = 5+ (2056 — 1)0
s=T,4 ‘
we absorb this term in Wick’s theorem still holds
the chemical potential but the matrices change
/ slightly M — D

(=u)" 1
Z="17) - dTi o > <Tf(ndT(7’1) — sy1)  (ap (Tn) — Oésm)>0
Z tuning o can help the

we now have an extra TT(ncu(Tl) — 0481¢) T (nd¢(7'n) — Oésn¢>> sign problem a lot

sum over auxiliary spins 0



Monte Carlo elements after trick

MC
MC sum: Zzz/ dry-dr, 3 Y
C n

The configurations are diagrams of the perturbation expansion. They can be
seen as a set of interaction vertices at different imaginary times with an
auxiliary spin s; at every vertex.

S1 S9
C:{n,ﬂ;,si}: $ ¢ $
T1 T2 Tn
&

The weight of every diagram is given by the absolute value of

w(C) = (%U)n det D! det D



Generating diagrams

We need to create a Markov chain of diagrams

We can propose any changes to go from one diagram to another. A simple solution is to
use two “moves’:

An insertion of a vertex: we pick a random imaginary time and insert a vertex with a spin
randomly up or down (A)

A removal of a vertex: pick a random vertex and remove it (B)




lNnsertion of a vertex

What is the acceptance rate?

1 —
X X (

o, b,

(T
-

-Up o det D2+1Di+1

Az, = min [1,
$ T, n
Tn
O $ y,n+1
Tn Tn+1
0
) det DI det DY H dT;
i=1
n—+1

det D! det D}, H dr;
i=1

n

1

det Dj,j Df,%

|




Removal of a vertex

Py@p(y)}

A, , = min [1,
" Px,yp(x)

What is the acceptance rate?

$ é T,
71 T2
$ Yy, n — 1
71
b 0
1 1 —U\" -
1=1

n—1
1=1

, —n  det Di_lDi_l
Ag ., = mm{l, — X ] }
Up det D,, Dy,

Accept move with:



Computational effort

The effort comes from the calculation of the determinants and of the inverse
matrix (needed for the Green function measure)

Z:ZO/ (_TU) det DT det D
C

GO‘(ZUJ??J) ™~ GOO‘(an) 62 OO‘ an Z Z DO' zgl an(T TJ) X Slgﬂ( (C))

0.16

U=2.0 =t

It would be very slow to calculate them 014 |
from scratch at every move 012 |

They can be updated quickly using the :
Sherman-Morrison formula

h

O
@)
o

The computational effort grows in @(n3)

0 10 20 30 40 50 60



Histogram

Sign problem in the generic case

Simple investigation on Hubbard chain

Hubbard chain with N=32, U=3.5tand u=t

e Bt = 2.00
s Bt = 4.00
s Bt = 6.00
e Bt = 8.00
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Continuous-time guantum Monte Carlo algorithms

+ The hybridization-expansion algorithm (CT-HYB)

Write a perturbation series expansion in the hybridization function



Hybridization expansion CT-QMC

»  We focus on the simplest Anderson model (can be generalized to multi-orbital problems)

-  We want to derive an expansion around the atomic limit (expansion in the hybridization)
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Hybridization expansion CT-QMC

We work in the imaginary-time formalism
1
7 = /D[d‘t,d]e_s (A) = E/D[d‘t,d]e_sA

The action for the Anderson model:

. | | . Vio |7
G ! n) — n — AO’ n AU n) — ‘ :
Rewrite the action as S = Sloc + E Shyb

&
Soc = [ dr[ Y dh (D=0 + e0)do () + Unay(r)nay (7)]
’ o ~—— action of the atomic problem

&
qo drdr'd" (T A, (1 — 7)d, (1))
nyb /0 rdrdg (T)2e (T = 1) (T)\ “perturbation”



Hybridization expansion CT-QMC

We write a series expansion for the exponential of the perturbation

- /D[d”r7 ~Sioc= ), Siyp /D dT, d]e™ > H {i (_nll)n (Sﬁyb)n}

n=0
Again an average appears but this time over the atomic state!

@
na
4 = Z <T H o Shyb >1OC<\ average over the
nq,mny =0 o atomic state

This time, we cannot use Wick’s theorem and those averages will have to be
computed with

Hamiltonian of the




Hybridization expansion CT-QMC

Inserting the expression of the hybridization action we get

. e f /O " drdrdl (1) Ay ( — 7)o ()

Sum over many

/ (continuous)
> b b variables
[ = Z dTlT...dT/T al7'1¢...al7"¢

0 0

ny Product of
ng,M | = hybridization

ng Mo k////////////funcﬁons

Trace involving

both spin up - -l =
anddown = Te|e e Tk har (o [T df (i (oY)
operators =1 1=1



Hybridization expansion CT-QMC

MC sum: Z Z / dTl. dT / de...dT{i

n+,m =0

Diagrams:

C — {n077-i077_7j/0} —

Weight: w(C) =] (_1)0% f[Aa(n" -77) X

Unfortunately these diagrams have alternating signs = problems!



Trick: resumming diagrams

The idea is to resum diagrams into a determinant. We start from a diagram
where r{ >...>7!  andsum all the permutations of {r}

" 1 "
71 T1 79 0 0
O—@ © e 2T
o = 1 1 " 1 1
1 1 2 2
On @—O O Ty
5 0
- 11
Tr| e~ PPhecdl (] )dr(ry)d}(r3)di (r3)) | X S A (r] = 1) Ap(ry — 73]
a 11
(=1)Trle Ml“ﬂ(Tf)dT(T{T)dﬁ(Tg)dT(Tg)_ X §AT(T§ — A =7

B 1
T e~ Hoedl (7)) dy ()} () ()| x 5 det Aqg(r] —7/")



MC sum: Z Z /n> ot dr] .. dT’T/Tl> ok Ldry .
R T V> >r’¢
Diagrams:
/T T Tg TQT
C___{ o /a}__ "
— No,T; 4T, — O ‘
1 1
b

Weight: wC) =[[(-1)" det A (77 —7/7) x

Hybridization expansion Monte Carlo

1<k, l<n,

T[ B’Hk)cT HdT dT - HdT



Generating diagrams

New diagrams are generated with two “moves”:

Insertion of an (anti)-link: chose a spin flavor and pick two random imaginary times
such that there is no operator between them. Either construct a link (A) or an anti-link

(B)

Removal of a link: chose a spin flavor and remove a random link (C)

(A)l
T {T 7'1T 7‘9 TQT ‘l'
o—e OO0
T {T T 1T T éT TéT 7'3T
o — @ — O
" l (B) l
To 5
o—-—_V
o




Insertion of an (anti-)link

. | | P,
What is the acceptance rate for this move? A, = min {1, y,zf Eyﬂ
z,y PAL
' ! Ty o ‘l' ‘l'
Oo—@ O——@ rn
0O —
G noA
@ O—m0 O O y,n+ 1
b 0
1 dTn_|_1 der/L—I—l "
Pa:‘,yp(ﬂf) = 5 X 6 lmaX X TIC:U det Acw 1:[1 de’dTZ‘/
1 1 n—+1 -
Pyap(y) = 5 x —— x| TiCy det A, 1:[1 drdr!

6lmax TrCy det AC
X .
n + 1 TrC, det A¢_ |-

Ay, = min|l,

Accept with probability:



Removal of a link

Py«
What is the acceptance rate for this move? A, = min {1, Y Z Ei;
T,y
el o )
o-—® O—@ -
g — "
71
o0 y,n — 1
o 0
P, .,p(x) 1><1><T(/’th ﬁd dr!
T — — Irce . de AT
7yp L 2 n C:r; ol T TZ
1 dr, dr] n—1
Py zp(y) = 5 X . x |TrC,y det Ac, Zl;[ dr;dr;
I n TrCy det Ac, -
Accept with probability: Agy = min 1, 3 ITic, dot e .




Measuring the Green function

We know how to sample diagrams with weights corresponding to their contribution in the
partition function.

MC

7 = /(—1)”T+”¢ det Ayc det A o TrC = / w(C) ~ Zsign(w(C))
C c C
How do we get the Green function? G (7) = 1 dlogZ
o\ = BOA;(—T)
A
Go(r) = == [ Q9eCATC jymrtne geg Ao TrC
¢ 0A4(=T)
—1
/ — Tl -+ )[AT_Cl]k,l X (—1)7”_'_7” det ATC det AwTrC’
C ok, - - /
w(C)
Measure: LL(S —7{7 + 1) x [AZ 2]k x sign(w(C))

C k,l



Measuring the Green function

Each configuration give contributions for a discrete set of imaginary times:

LL& —7{7 4+ 1) x [AZ 3]k x sign(w(C))

C k|l

0O —

These contribution can be “binned” on a very fine imaginary-time grid. This induces
high frequency noise in Matsubara frequencies



Measuring using Legendre polynomials
L. Boehnke et al., PRB (2011)

I l l

- Legendre polynomials are a basis to 1
express function defined over an
interval ol

»  We can express the imaginary- i qu—
. . . . P.(X)
time Green function in this By

-1 | | | PS(X)

basis b ; :
\/2l _I_ 1 0.5 | I Xl |
— [ even ——
G(r) = )_ g 2(7)IG: IR £ W
1>0 PR e | |
—0.5 F 18(1) L. | | | ]
. : : / OE T :
- The coefficients G; in this 510 RN 1 -
s —~ 3 " =
. - O -3 ey i
basis decay very quickly st —13_2 e 0 ) e AR A -
20 107°F ‘ 1
a": s | | | | © .
I 0, 20 40 60 80 100
-7 5
0 20 40 60 80 100



| egendre basis acting as a filter

» The noise in the Matsubara frequencies can be reduced by truncating the Legendre
coefficients that are zero within their error bars

» Atypical outcome of this procedure:

0 ‘.' | | | | I
—0.1 [ | AR _
k,.,_.- o I l [ [ [ S -
—0.2 S 00 pO
‘ —OO l 75 B 0O © d/ O
- ‘3 — )
\3 04 1 ;: —0.018 e -
5 _o s L = % Ol O © i
= 0 5 —0.0185 - O R0 -
~ |
— —06 H — ; o -
— 0019 - ot - Legendre ——_
07 U ' o, ﬁiv 1mag. time — | _|
i( o Matsubara ——
) o tall ——
—08 I —0.0195 E&_ | | | | | 1 -
i | ;2 53 54 55 56 |, 57 58
—0.9
S 10 15 20 25 30
\



Computational effort

Can the contribution of a diagram be computed quickly?

Determinants can be updated quickly (Sherman-Morrison)

For simple Hamiltonians, the trace is very easy

AR B N R
0O — | |
7 = O——e9,
o K
/6 0.1
. 0.09 r
- } 0.08
overlap: 1 lo o
_ 0.06
TrC = et Hl)pn—Uli+l2) s 0%
0.03
0.02 r
: : 3
Computational effort grows in O(n”) —

U/t=0

Ut=3
Ult=4
Ult=5

Bt=100

10

20

30 40
order k

50 60




What about non density-density Hamiltonians®

The hybridization expansion algorithm can be modified for generic Hamiltonians

Configurations are a set of creation / destruction operators of different flavor on a
single imaginary-time line

B 0
™ ! T Ta Ty Ty Ty )
O O O O O O

The main drawback is that there is no longer a quick way to compute the trace
Operators are matrices that must be multiplied and traced over all atomic states

The number of these atomic states quickly becomes large with several orbitals



CT-INT versus CI-HYB

CT-INT & CT-AUX: series in the interaction
— Many orbitals, weak coupling, high temperatures
— Mainly density-density Hamiltonians

— Average perturbation order ~ gU

CT-HYB: series in the hybridization function
— Good at low temperatures, strong coupling
— Can treat generic Hamiltonians
— Hard to treat many orbitals

— Average perturbation order is the kinetic energy



Pros and cons of the CT-QMC algorithms

Pros:

Faster than earlier algorithms like Hirsch-Fye

Monte Carlo = can easily be parallelized

Flexible Hamiltonians

Good scaling with number of orbitals if density-density

Limitations:

Many orbitals difficult with generic Hamiltonian

They are in imaginary time, so one needs to do analytical continuation, and
this is a very delicate procedure!

Note: some real-time algorithms have been developed

Sign problem



summary

Continuous-time quantum Monte Carlo algorithms have allowed for progress in
computing the properties of strongly-correlated systems

— Lower temperatures
— Generic Hamiltonians, new approaches (e.g cluster DMFT, ...)

— Larger number of orbitals / sites

The idea of the algorithms is to sample stochastically the diagrams of a series
expansion of the partition function

According to one’s need, different expansions can be used

There are still limitations (sign problem, speed, ...) and more work has to be done!



