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Les armes de l’École polytechnique, blason 
historique où $gure la devise de Napoléon « Pour 
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de Paris se matérialise par le sceaux du logo de 
l’Institut Polytechnique de Paris, ainsi que par son  
nom abrégé, IP Paris.
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• Quantum impurity problems: 
A. C. Hewson, “The Kondo Problem to Heavy Fermions”, Cambridge University Press

• CT-QMC solvers: E. Gull et al., RMP (2011)
– The interaction-expansion algorithm 

Rubtsov et al. , PRB (2005) and Rubtsov and Lichtenstein, JETP Lett. (2004)
– The hybridization-expansion algorithm 

Werner and Millis, PRB (2006) and Werner et al., PRL (2006)

• Dynamical mean-field theory: A. Georges et al., RMP (1996)

• Open source CT-QMC solver used in TRIQS tutorial:
– CT-HYB: https://triqs.github.io/cthyb
– CT-INT: https://github.com/TRIQS/tutorials in C++/ctint
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• They generically describe the behavior of a magnetic impurity 
embedded in an electronic host

• The impurity is a set of “orbitals” carrying local many-body 
interactions. It can exchange electrons with an uncorrelated 
fermionic bath. 
 
 

• Impurity models have a long history, e.g. the Kondo problem

• Lead to the development of models and methods

Electronic 
bath

« Atomic »
problem with 
several orbitals

de Haas, van den Berg, 
1936

Quantum impurity problems



• A very successful model to understand magnetic impurities in a metallic host is 
the Anderson model

• Hamiltonian:

local many-body 
interaction

hybridization to  
the bath

free bath 
states

The Anderson model

ϵd



• When , the Anderson model can be solved

• Its non-interacting Green function is then  
 
 
 
 
 
where  
 
 

• The Anderson impurity model is completely determined by the interaction  and 
the hybridization function 

• The model can be generalized (more orbitals, sites, etc.)

U = 0

U
Δ

hybridization function: describes 
the transition between the bath 
and the orbital
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where �i = ±1 is a spin variable sitting on the site i of a lattice. In mean-field, the spin-spin term in the
Hamiltonian is approximated by �i�j ! h�i i�j + �i h�j i. As a result, the effective mean-field Hamiltonian
describes a single site embedded in an effective Weiss field he↵

He↵ = �he↵
X

i

�i (30)

In this expression, the Weiss field is determined self-consistently via the condition

he↵ = zJh�i , m = tanh(�he↵) = tanh(�zJm), (31)

where z is the coordination number of the lattice. To summarize, in the mean-field approach, the original
lattice Hamiltonian is approximated by a single-site model embedded in a self-consistent effective magnetic
field.

How can such an approach be used for the Hubbard model? If one isolates a given site of the lattice,
its environment is more than just an effective field. Indeed, from the point of view of a single site, its
environment is an electronic bath with which it can exchange electron. The relevant single-site model that
describes this is the Anderson impurity model that we will now describe.

The Anderson impurity model

In dynamical mean-field theory, the original lattice model will be approximated by a cleverly-chosen single-
site model. This model has to describe an single electronic level that can exchange electrons with its
environment. Such a model existed long before dynamical mean-field theory and played a major role in
understanding the physics of (magnetic) impurities embedded in a metallic host. It was introduced by
Anderson and its Hamiltonian reads

HAIM =
X

�

✏d d
†

�
d� + Und"nd# +

X

k�

✏k c
†

k�
ck� +

X

k�

⇣
Vkc

†

k�
d� + h.c.

⌘
, (32)

where c†
k�

creates an electron with momentum k in the bath, d†� creates an electron with spin � on the
impurity level and nd� = d

†

�d� is the density operator on the impurity. The first two terms of the Hamiltonian
describe the impurity level with energy ✏d and impose an energy cost U if two electrons are sitting on the
impurity. The third term describes an electronic bath, with some dispersion ✏k . Finally, the last term couples
the impurity and the bath with a transition amplitude given by Vk .

The Anderson impurity model is still a difficult quantum many-body problem. Indeed, it involves an infinite
number of degrees of freedom that are all connected. The difficulty comes from the quartic interaction
term Und"nd#. Indeed, the problem can be solved exactly when U = 0. In that case, the Hamiltonian is
quadratic. One can show that the single-particle Green function for the non-interacting (U = 0) Anderson
impurity model is

G0(i!n) =
1

i!n � ✏d � �(i!n)
, (33)

where we have used the subscript 0 to emphasize that this is the non-interacting Green function and where
we have introduced the hybridization function �(i!n)

�(i!n) =
X

k

|Vk |2
i!n � ✏k

(34)

We can see that if the transition amplitudes are vanishing, G0 is nothing but the Green function for a
free fermion with energy ✏d . When Vk 6= 0, the electrons on the impurity can hop to the bath and come
back. This scattering process introduces a finite lifetime for the impurity electrons. This effect is entirely
described by the hybridization function �(i!n). Note that the knowledge of �(i!n) is enough to capture
the single-particle physics of the model and that one does not need to know all the transition amplitudes
Vk and bath energy levels ✏k .

When the interaction term U 6= 0, the interacting Green function will be different from G0. As discussed
above, these interaction effects can be described by a self-energy ⌃ such that

G(i!n) =
1

i!n � ✏d � �(i!n)�⌃(i!n)
(35)
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• The Anderson model is a many-body (correlated) problem with an infinite number of degrees 
of freedom! It has attracted a lot of interest and many techniques have been developed:

• (Semi) Analytical methods

– Bethe Ansatz, BCFT

– Non-crossing approximation

• Numerical algorithms

– Exact diagonalization

– Numerical renormalization group

– Tensor network approaches (DMRG)

– Continuous-time quantum Monte Carlo algorithms

– And many more…

• All have pros and cons!

A difficult problem!



• The dynamical mean-field theory makes an approximation of a lattice model using an 
auxiliary quantum impurity problem

Bath   G0

Anderson impurity model

A. Georges and G. Kotliar, PRB (1992)
A. Georges et al., RMP (1996)

The bath has to be set self-consistently

Lattice Hubbard model

Our goal: solve the DMFT equations



• The impurity solver must compute the local Green function and more

• Bath can have a rich structure, be gapped  
(insulators, superconductors)

• Structures appear at all scales (transfer of 
spectral weight in the Mott transition)

• The impurity solver must be able to treat 
many orbitals (e.g. realistic materials)

• The interaction Hamiltonian can be  
generic (pair-hopping, spin flip terms)

• The model is studied in different 
temperature regimes

• One would like to be able to have real-frequency spectra

The DMFT aficionado wish list
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• They have been a small revolution! 

• They exist in different flavors:

– CT-INT: Interaction expansion

– CT-HYB: Hybridization expansion

– CT-AUX: Auxiliary-field formulation  

• The underlying principle is the same for all these algorithms

– Write a series expansion of the partition function and physical observables

– Sample the contributions stochastically (Monte Carlo)

– Compute quantities of interest (Green function, …)

Continuous-time quantum Monte Carlo methods



• Different version correspond to different ways to construct your perturbation series 
 

• CT-INT (and also CT-AUX)

•  is the non-interacting system and  the Coulomb interaction  
 
We want to compute 

• CT-HYB

•  is the “atomic limit” and  is the hybridization to the bath  
 
We want to compute 

H0 HI

Z = ∑
n

an Un

H0 HI Δ

" Z = ∑
n

an Δn "

Continuous-time quantum Monte Carlo methods
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Interaction expansion continuous-time quantum Monte Carlo

There are many different flavors of quantum Monte Carlo algorithms. Some address lattice Hamiltonians,
some aim at finding the solution of a quantum impurity problem, etc. It is not the ambition of these notes
to describe or give an overview of all of them. Instead, we will focus on one specific algorithm, known as
the continuous-time interaction expansion quantum Monte Carlo (CT-INT). It belongs to a group of three
continuous-time algorithms that have been a bit of a revolution in finding the solution of the Anderson
impurity model (32) within the dynamical mean-field theory

• CT-INT: The interaction expansion continuous-time QMC

• CT-AUX: The continuous-time auxiliary-field QMC

• CT-HYB: The hybridization expansion continuous-time QMC

The spirit of these approaches is the same: one divides the quantum impurity Hamiltonian into two pieces
H = H0 +HI , where the first piece is one that can be solved (fairly) easily. The second piece HI is then
treated perturbatively to all orders. In the CT-HYB, H0 is the impurity Hamiltonian (describing an isolated
impurity site) and the hybridization to the bath is treated as the perturbation. In the CT-INT (and the
CT-AUX that is very similar in nature) H0 is the quadratic non-interacting (U = 0) part of the Hamiltonian
and the Coulomb interaction term is treated perturbatively. As a result, one obtains a perturbation series
for quantity of interest. For example, the partition function will be written as a series in U

Z =
X

n

anU
n (63)

We will derive the precise expression of the coefficients an below. If one has met Feynman diagrams
before, the coefficients an are nothing but the sum of all diagrams at a given perturbation order n. From a
computational point of view, the expression for a given an will typically involve multiple time integrals that
cannot be carried out explicitly. The CT-INT algorithm is therefore sampling these integrals by a Monte
Carlo method.

Interaction picture and time evolution operator

In order to reach a perturbation series expression such as (63), a first formal step is to work in the interaction

picture which allows to naturally disentangle the evolution of the non-interacting and of the interacting part
of the Hamiltonian. Let us consider an operator A. In the Heisenberg picture, this operator evolves in time
according to

A(⌧) = e⌧HAe�⌧H Heisenberg picture (64)

In this expression, the observable evolves according to the full Hamiltonian. In cases where the Hamiltonian
can naturally be expressed as the sum of a non-interacting term and a perturbation, H = H0 +HI , it can
sometimes be useful to consider a different evolution, the interaction picture, where the operator evolves
according to H0 only

Â(⌧) = e⌧H0Ae�⌧H0 Interaction picture (65)

The notation Â(⌧) emphasizes that the interaction picture is used. A product A(⌧)B(⌧ 0), that is typically
present in objects like a Green function, is expressed in the following way in terms of the interaction picture
operators Â(⌧) and B̂(⌧)

A(⌧)B(⌧ 0) = Û(0, ⌧)Â(⌧)Û(⌧, ⌧ 0)B̂(⌧ 0)Û(⌧ 0, 0), (66)

where we have introduced the time evolution operator in the interaction picture

Û(⌧, ⌧ 0) = e⌧H0
h
e
�(⌧�⌧ 0)H

i
e
�⌧

0
H0 (67)

This operator satisfies Û(⌧, ⌧ 00)Û(⌧ 00, ⌧ 0) = Û(⌧, ⌧ 0) which also proves that it is unitary. It is possible to find
an explicit expression for Û(⌧, ⌧ 0) starting from the derivative

@⌧ Û(⌧, ⌧
0) = e⌧H0 (H0 �H) e�(⌧�⌧

0)H
e
�⌧

0
H0 = �ĤI(⌧)Û(⌧, ⌧ 0) (68)
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computing the  involves many 
integrals that we will compute 
using a Monte Carlo algorithm

an



Continuous-time quantum Monte Carlo algorithms

• Motivation: quantum impurity problems
Historical importance of quantum impurity problems and algorithmic developments

• Continuous-time quantum Monte Carlo (CT-QMC) methods
Introduction to the idea of CT-QMC methods and their different versions

• The interaction-expansion algorithm (CT-INT)
Write a perturbation series expansion in the Coulomb interaction 

• The hybridization-expansion algorithm (CT-HYB)
Write a perturbation series expansion in the hybridization function 



• We focus on the simplest Anderson model (can be generalized to multi-orbital 
problems)

• We want to derive an expansion around the non-interacting limit (expansion in the 
interaction)

Interaction expansion CT-QMC

ϵd



• We want to write a series expansion in . We have  with  

• We start from the equation of motion for the evolution operator 
 
 
 
where we have used the interaction picture

• Integration the equation above yields

U H = H0 + HI HI = Un↑n↓

Interaction expansion CT-QMC
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where we have introduced the time evolution operator in the interaction picture
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13

Michel Ferrero Introduction to DMFT and CTQMC

This differential equation together with the initial condition Û(⌧, ⌧) = 1 defines Û(⌧, ⌧ 0). An integration of
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d⌧2 ĤI(⌧1)ĤI(⌧2) (70)

�
Z
⌧

⌧ 0

d⌧1

Z
⌧1

⌧ 0

d⌧2

Z
⌧2

⌧ 0
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In the expression above, every term is an integral over a wedge of a hypercube of a product of HI that are
time ordered (larger times on the left). A more compact expression can be obtained by letting all integrals
run all the way to ⌧ . In that case, a time ordering operator has to be introduced to ensure that the terms
appear in the correct order, and a prefactor needs to compensate for the fact that the original wedge now
appears n! times in the hypercube of dimension n. We then have
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This is often written formally as a time-ordered exponential
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Computing correlators

We will typically be interested in computing objects such as Green functions. They have the general form
hT⌧ (A(⌧)B(⌧ 0))i. If we first suppose ⌧ > ⌧ 0 and using the derivations above we can write

hT⌧ (A(⌧)B(⌧ 0))i =
1

Z
Tr e��H A(⌧)B(⌧ 0) (76)

=
1

Z
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In the last identity, we have used the fact that Û(⌧, ⌧ 0) will only involve operators with times in the interval
[⌧, ⌧ 0]. We would have obtained the same result if we had supposed ⌧ 0 > ⌧ . Finally, using a similar expression
for the partition function, we find

hT⌧ (A(⌧)B(⌧ 0))i =
Tr e��H0 T⌧
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Û(�, 0)Â(⌧)B̂(⌧ 0)
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, (81)

where hAi0 is the average of the observable A taken with respect to the non-interacting system. We have
therefore obtained an expression for the correlator that involves the computation of the average value of
operators in the non-interacting system. As we will see, computing such averages is a tractable task because
of the possibility to use Wick’s theorem. Also, the derivations above make it clearer why the imaginary
time formalism is useful. Indeed, it has allowed to combine the Boltzmann factor together with the time
evolution operators of the observables and reach a very compact and symmetric expression.
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0) (69)

By iteratively reintroducing this expression in the integrand we obtain
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d⌧3 ĤI(⌧1)ĤI(⌧2)ĤI(⌧3) + . . . (71)

In the expression above, every term is an integral over a wedge of a hypercube of a product of HI that are
time ordered (larger times on the left). A more compact expression can be obtained by letting all integrals
run all the way to ⌧ . In that case, a time ordering operator has to be introduced to ensure that the terms
appear in the correct order, and a prefactor needs to compensate for the fact that the original wedge now
appears n! times in the hypercube of dimension n. We then have
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Û(�, 0)Â(⌧)B̂(⌧ 0)

�

Tr e��H0 Û(�, 0)
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Û(�, 0)Â(⌧)B̂(⌧ 0)

�↵
0⌦
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d⌧2 ĤI(⌧1)ĤI(⌧2) (70)

�
Z
⌧

⌧ 0

d⌧1

Z
⌧1

⌧ 0

d⌧2

Z
⌧2

⌧ 0
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0) (69)

By iteratively reintroducing this expression in the integrand we obtain
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Û(⌧, ⌧ 0) = T⌧ exp

✓
�
Z
⌧

⌧ 0

d⌧1 ĤI(⌧1)
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In the last identity, we have used the fact that Û(⌧, ⌧ 0) will only involve operators with times in the interval
[⌧, ⌧ 0]. We would have obtained the same result if we had supposed ⌧ 0 > ⌧ . Finally, using a similar expression
for the partition function, we find
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, (81)

where hAi0 is the average of the observable A taken with respect to the non-interacting system. We have
therefore obtained an expression for the correlator that involves the computation of the average value of
operators in the non-interacting system. As we will see, computing such averages is a tractable task because
of the possibility to use Wick’s theorem. Also, the derivations above make it clearer why the imaginary
time formalism is useful. Indeed, it has allowed to combine the Boltzmann factor together with the time
evolution operators of the observables and reach a very compact and symmetric expression.
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Perturbation series for the partition function

In order to compute the non-interacting averages of (81), we will need to insert the complete expression of
the time evolution operator (74). If we just focus on the partition function (divided by the non interacting
one Z0 in the denominator we have
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where we have used that for the Anderson impurity model HI = Un"n#. Note that the average is taken
over the non-interacting quadratic part of the Anderson impurity Hamiltonian. For this non-interacting
Hamiltonian, the up and down spins are uncorrelated and the average can be expressed as a product of two
pieces involving only one spin species
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We can now use Wick’s theorem to express these averages as simple determinants
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where the matrices have elements
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In these matrices, the non-interacting propagator G0� is given by

G0�(i!n) =
1

i!n � ✏d � ��(i!n)
(86)

From the expressions above, we see that the partition function Z/Z0 can be expressed as a perturbation
series in U. Every coefficient in this series is an integral over n times of a product of determinants.

Perturbation series for the Green function

The expression for the Green function is directly obtained from our general result for correlators (81)
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Following the same steps as for the partition function, we end up with
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We can again use Wick’s theorem and express the non-interacting averages in terms of determinants.
The only difference is that the matrix corresponding to the spin � will have one more row and column
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Perturbation series for the partition function

In order to compute the non-interacting averages of (81), we will need to insert the complete expression of
the time evolution operator (74). If we just focus on the partition function (divided by the non interacting
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where we have used that for the Anderson impurity model HI = Un"n#. Note that the average is taken
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In these matrices, the non-interacting propagator G0� is given by
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1

i!n � ✏d � ��(i!n)
(86)

From the expressions above, we see that the partition function Z/Z0 can be expressed as a perturbation
series in U. Every coefficient in this series is an integral over n times of a product of determinants.
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Û(�, 0)

↵
0

, (87)

Following the same steps as for the partition function, we end up with

G�(⌧ � ⌧ 0) =
Z0

Z

1X

n=0

(�U)n
n!

Z
�

0
d⌧1 · · ·

Z
�

0
d⌧n

⌦
(�1)T⌧

⇥
n̂"n̂#(⌧1) · · · n̂"n̂#(⌧n)ĉ�(⌧)ĉ†�(⌧ 0)
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†

�(⌧ 0) terms

G�(⌧ � ⌧ 0) =
Z0

Z

1X

n=0

(�U)n
n!

Z
�

0
d⌧1 · · ·

Z
�

0
d⌧n det eM(n)� detM(n)

�̄
(89)

where M(n)
�̄

is the same as above and eM(n)� has elements

eM(n)
�
=

0

BBBBB@

G0�(0�) . . . G0�(⌧1 � ⌧n) G0�(⌧1 � ⌧ 0)
G0�(⌧2 � ⌧1) . . . G0�(⌧2 � ⌧n) G0�(⌧2 � ⌧ 0)

...
. . .

...
...

G0�(⌧n � ⌧1) . . . G0�(0�) G0�(⌧n � ⌧ 0)
G0�(⌧ � ⌧1) . . . G0�(⌧ � ⌧n) G0�(⌧ � ⌧ 0)

1

CCCCCA
(90)

15

Michel Ferrero Introduction to DMFT and CTQMC

Perturbation series for the partition function

In order to compute the non-interacting averages of (81), we will need to insert the complete expression of
the time evolution operator (74). If we just focus on the partition function (divided by the non interacting
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where we have used that for the Anderson impurity model HI = Un"n#. Note that the average is taken
over the non-interacting quadratic part of the Anderson impurity Hamiltonian. For this non-interacting
Hamiltonian, the up and down spins are uncorrelated and the average can be expressed as a product of two
pieces involving only one spin species
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In these matrices, the non-interacting propagator G0� is given by
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1
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From the expressions above, we see that the partition function Z/Z0 can be expressed as a perturbation
series in U. Every coefficient in this series is an integral over n times of a product of determinants.
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Perturbation series for the partition function

In order to compute the non-interacting averages of (81), we will need to insert the complete expression of
the time evolution operator (74). If we just focus on the partition function (divided by the non interacting
one Z0 in the denominator we have
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where �i = ±1 is a spin variable sitting on the site i of a lattice. In mean-field, the spin-spin term in the
Hamiltonian is approximated by �i�j ! h�i i�j + �i h�j i. As a result, the effective mean-field Hamiltonian
describes a single site embedded in an effective Weiss field he↵

He↵ = �he↵
X

i

�i (30)

In this expression, the Weiss field is determined self-consistently via the condition

he↵ = zJh�i , m = tanh(�he↵) = tanh(�zJm), (31)

where z is the coordination number of the lattice. To summarize, in the mean-field approach, the original
lattice Hamiltonian is approximated by a single-site model embedded in a self-consistent effective magnetic
field.

How can such an approach be used for the Hubbard model? If one isolates a given site of the lattice,
its environment is more than just an effective field. Indeed, from the point of view of a single site, its
environment is an electronic bath with which it can exchange electron. The relevant single-site model that
describes this is the Anderson impurity model that we will now describe.

The Anderson impurity model

In dynamical mean-field theory, the original lattice model will be approximated by a cleverly-chosen single-
site model. This model has to describe an single electronic level that can exchange electrons with its
environment. Such a model existed long before dynamical mean-field theory and played a major role in
understanding the physics of (magnetic) impurities embedded in a metallic host. It was introduced by
Anderson and its Hamiltonian reads

HAIM =
X

�

✏d d
†

�
d� + Und"nd# +

X

k�

✏k c
†

k�
ck� +

X

k�

⇣
Vkc

†

k�
d� + h.c.

⌘
, (32)

where c†
k�

creates an electron with momentum k in the bath, d†� creates an electron with spin � on the
impurity level and nd� = d

†

�d� is the density operator on the impurity. The first two terms of the Hamiltonian
describe the impurity level with energy ✏d and impose an energy cost U if two electrons are sitting on the
impurity. The third term describes an electronic bath, with some dispersion ✏k . Finally, the last term couples
the impurity and the bath with a transition amplitude given by Vk .

The Anderson impurity model is still a difficult quantum many-body problem. Indeed, it involves an infinite
number of degrees of freedom that are all connected. The difficulty comes from the quartic interaction
term Und"nd#. Indeed, the problem can be solved exactly when U = 0. In that case, the Hamiltonian is
quadratic. One can show that the single-particle Green function for the non-interacting (U = 0) Anderson
impurity model is

G0(i!n) =
1

i!n � ✏d � �(i!n)
, (33)

where we have used the subscript 0 to emphasize that this is the non-interacting Green function and where
we have introduced the hybridization function �(i!n)

�(i!n) =
X

k

|Vk |2
i!n � ✏k

(34)

We can see that if the transition amplitudes are vanishing, G0 is nothing but the Green function for a
free fermion with energy ✏d . When Vk 6= 0, the electrons on the impurity can hop to the bath and come
back. This scattering process introduces a finite lifetime for the impurity electrons. This effect is entirely
described by the hybridization function �(i!n). Note that the knowledge of �(i!n) is enough to capture
the single-particle physics of the model and that one does not need to know all the transition amplitudes
Vk and bath energy levels ✏k .

When the interaction term U 6= 0, the interacting Green function will be different from G0. As discussed
above, these interaction effects can be described by a self-energy ⌃ such that

G(i!n) =
1

i!n � ✏d � �(i!n)�⌃(i!n)
(35)
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Perturbation series for the partition function

In order to compute the non-interacting averages of (81), we will need to insert the complete expression of
the time evolution operator (74). If we just focus on the partition function (divided by the non interacting
one Z0 in the denominator we have
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where we have used that for the Anderson impurity model HI = Un"n#. Note that the average is taken
over the non-interacting quadratic part of the Anderson impurity Hamiltonian. For this non-interacting
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Û(�, 0)

↵
0
=

1X

n=0

(�U)n
n!

Z
�

0
d⌧1 · · ·

Z
�

0
d⌧n detM

(n)
"
detM(n)

#
, (84)
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In these matrices, the non-interacting propagator G0� is given by
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From the expressions above, we see that the partition function Z/Z0 can be expressed as a perturbation
series in U. Every coefficient in this series is an integral over n times of a product of determinants.

Perturbation series for the Green function

The expression for the Green function is directly obtained from our general result for correlators (81)
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We can again use Wick’s theorem and express the non-interacting averages in terms of determinants.
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We now have an expression for the Fourier transform G�(i!n)
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We see that in order to compute G�(i!n), one can focus on the computation of K�(i!n) whose expression
is very similar to that of the partition function (84).

Monte Carlo sampling

We have found that we can obtain the Green function by computing K�(i!n), which is the ratio of two
perturbation series in U
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Carrying out the time integrals by standard integration tools quickly become prohibitive. It is then natural
to try to compute them stochastically by Monte Carlo. The formula above in actually very reminiscent of
the kind of formula that are found in classical statistical physics. The main difference is however that there
is no Boltzmann factor here, so we will have to choose a different Monte Carlo weight. The Monte Carlo
will be constructed from the following elements

• The Monte Carlo sum:
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⌘
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0
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• A Monte Carlo configuration is
C = {n, ⌧1, . . . , ⌧n}

• The sampling is done according to a probability distribution

⇢(C) = |w(C)| with w(C) = (�U)
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It seems like we have all the pieces to have a quantum Monte Carlo algorithm to solve the Anderson impurity
model. There is a problem however. The value of a configuration w(C) is proportional to (�U)n. This will
lead to a major sign problem with contributions from two consecutive orders that are of a similar magnitude
but of opposite sign!
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We now have an expression for the Fourier transform G�(i!n)
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We see that in order to compute G�(i!n), one can focus on the computation of K�(i!n) whose expression
is very similar to that of the partition function (84).

Monte Carlo sampling

We have found that we can obtain the Green function by computing K�(i!n), which is the ratio of two
perturbation series in U
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Carrying out the time integrals by standard integration tools quickly become prohibitive. It is then natural
to try to compute them stochastically by Monte Carlo. The formula above in actually very reminiscent of
the kind of formula that are found in classical statistical physics. The main difference is however that there
is no Boltzmann factor here, so we will have to choose a different Monte Carlo weight. The Monte Carlo
will be constructed from the following elements

• The Monte Carlo sum:
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• A Monte Carlo configuration is
C = {n, ⌧1, . . . , ⌧n}

• The sampling is done according to a probability distribution
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K�(i!n) =

PMC
C

P
i j
e
i!n(⌧i�⌧j )

h
M
(n)
�

i�1
i j

sign(w(C))
PMC
C
sign(w(C))

It seems like we have all the pieces to have a quantum Monte Carlo algorithm to solve the Anderson impurity
model. There is a problem however. The value of a configuration w(C) is proportional to (�U)n. This will
lead to a major sign problem with contributions from two consecutive orders that are of a similar magnitude
but of opposite sign!
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model. There is a problem however. The value of a configuration w(C) is proportional to (�U)n. This will
lead to a major sign problem with contributions from two consecutive orders that are of a similar magnitude
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Very different from the Boltzmann weight!



• Imagine we want to compute this average:

• We use the absolute value of  as a probability 
 
 

• If signs alternate the denominator is very small and there is a big variance!

• The average sign typically decreases exponentially with temperature, system 
size, etc.

• Fermionic problems very often suffer from this sign problem!

w(x)

The fermionic sign problem



• The sign will alternate with  and it will lead to a terrible sign problem. But there 
is a trick

n

Sign problem in interaction expansion CT-QMC
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Perturbation series for the partition function

In order to compute the non-interacting averages of (81), we will need to insert the complete expression of
the time evolution operator (74). If we just focus on the partition function (divided by the non interacting
one Z0 in the denominator we have
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where we have used that for the Anderson impurity model HI = Un"n#. Note that the average is taken
over the non-interacting quadratic part of the Anderson impurity Hamiltonian. For this non-interacting
Hamiltonian, the up and down spins are uncorrelated and the average can be expressed as a product of two
pieces involving only one spin species
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Û(�, 0)

↵
0
=

1X

n=0

(�U)n
n!

Z
�

0
d⌧1 · · ·

Z
�

0
d⌧n hT⌧ [n̂"(⌧1) · · · n̂"(⌧n)]i0 hT⌧ [n̂#(⌧1) · · · n̂#(⌧n)]i0 . (83)

We can now use Wick’s theorem to express these averages as simple determinants
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where the matrices have elements
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In these matrices, the non-interacting propagator G0� is given by

G0�(i!n) =
1

i!n � ✏d � ��(i!n)
(86)

From the expressions above, we see that the partition function Z/Z0 can be expressed as a perturbation
series in U. Every coefficient in this series is an integral over n times of a product of determinants.

Perturbation series for the Green function

The expression for the Green function is directly obtained from our general result for correlators (81)
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Following the same steps as for the partition function, we end up with
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We can again use Wick’s theorem and express the non-interacting averages in terms of determinants.
The only difference is that the matrix corresponding to the spin � will have one more row and column
corresponding to the ĉ�(⌧)ĉ
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�(⌧ 0) terms
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where M(n)
�̄

is the same as above and eM(n)� has elements
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we absorb this term in 
the chemical potential

tuning  can help the 
sign problem a lot

δ
we now have an extra 
sum over auxiliary spins

Wick’s theorem still holds 
but the matrices change 
slightly M → D



• MC sum:

• The configurations are diagrams of the perturbation expansion. They can be 
seen as a set of interaction vertices at different imaginary times with an 
auxiliary spin  at every vertex.

• The weight of every diagram is given by the absolute value of

si

Monte Carlo elements after trick



• We need to create a Markov chain of diagrams

• We can propose any changes to go from one diagram to another. A simple solution is to 
use two “moves”:

• An insertion of a vertex: we pick a random imaginary time and insert a vertex with a spin 
randomly up or down (A)

• A removal of a vertex: pick a random vertex and remove it (B)

(A)(B)

Generating diagrams



• What is the acceptance rate?

• Accept move with:

Insertion of a vertex



• What is the acceptance rate?

• Accept move with:

Removal of a vertex



• The effort comes from the calculation of the determinants and of the inverse 
matrix (needed for the Green function measure)

• It would be very slow to calculate them 
from scratch at every move

• They can be updated quickly using the  
Sherman-Morrison formula

• The computational effort grows in 𝒪(n3)

Computational effort



• Simple investigation on Hubbard chain

Sign problem in the generic case



Continuous-time quantum Monte Carlo algorithms

• Motivation: quantum impurity problems
Historical importance of quantum impurity problems and algorithmic developments

• Continuous-time quantum Monte Carlo (CT-QMC) methods
Introduction to the idea of CT-QMC methods and their different versions

• The interaction-expansion algorithm (CT-INT)
Write a perturbation series expansion in the Coulomb interaction 

• The hybridization-expansion algorithm (CT-HYB)
Write a perturbation series expansion in the hybridization function 



• We focus on the simplest Anderson model (can be generalized to multi-orbital problems) 

• We want to derive an expansion around the atomic limit (expansion in the hybridization)

ϵd

Hybridization expansion CT-QMC



• We work in the imaginary-time formalism

• The action for the Anderson model:

• Rewrite the action as

action of the atomic problem

“perturbation”

Hybridization expansion CT-QMC



• We write a series expansion for the exponential of the perturbation

• Again an average appears but this time over the atomic state!

• This time, we cannot use Wick’s theorem and those averages will have to be 
computed with

average over the 
atomic state

Hamiltonian of the 
local problem

Hybridization expansion CT-QMC



• Inserting the expression of the hybridization action we get

Sum over many 
(continuous) 
variables

Trace involving 
both spin up 
and down 
operators

Product of 
hybridization 
functions

Hybridization expansion CT-QMC



• MC sum:

• Diagrams:

• Weight:

• Unfortunately these diagrams have alternating signs ⇒ problems!

Hybridization expansion CT-QMC



• The idea is to resum diagrams into a determinant. We start from a diagram 
where                              and sum all the permutations of

Trick: resumming diagrams



• MC sum:

• Diagrams:

• Weight:

Hybridization expansion Monte Carlo



• New diagrams are generated with two “moves”:

• Insertion of an (anti)-link: chose a spin flavor and pick two random imaginary times 
such that there is no operator between them. Either construct a link (A) or an anti-link 
(B)

• Removal of a link: chose a spin flavor and remove a random link (C)
(A)

(B)
(C)

Generating diagrams



• What is the acceptance rate for this move?

• Accept with probability:

Insertion of an (anti-)link



• What is the acceptance rate for this move?

• Accept with probability:

Removal of a link



• We know how to sample diagrams with weights corresponding to their contribution in the 
partition function.

• How do we get the Green function?

• Measure:

Measuring the Green function



• Each configuration give contributions for a discrete set of imaginary times:

• These contribution can be “binned” on a very fine imaginary-time grid. This induces 
high frequency noise in Matsubara frequencies

Measuring the Green function



• Legendre polynomials are a basis to  
express function defined over an  
interval

• We can express the imaginary- 
time Green function in this 
basis

• The coefficients in this 
basis decay very quickly

L. Boehnke et al., PRB (2011)
Measuring using Legendre polynomials



• The noise in the Matsubara frequencies can be reduced by truncating the Legendre 
coefficients that are zero within their error bars

• A typical outcome of this procedure:

Legendre basis acting as a filter



• Can the contribution of a diagram be computed quickly?

• Determinants can be updated quickly (Sherman-Morrison)

• For simple Hamiltonians, the trace is very easy

• Computational effort grows in          

overlap:

Computational effort



• The hybridization expansion algorithm can be modified for generic Hamiltonians

• Configurations are a set of creation / destruction operators of different flavor on a 
single imaginary-time line

• The main drawback is that there is no longer a quick way to compute the trace

• Operators are matrices that must be multiplied and traced over all atomic states

• The number of these atomic states quickly becomes large with several orbitals

What about non density-density Hamiltonians?



• CT-INT & CT-AUX: series in the interaction

– Many orbitals, weak coupling, high temperatures

– Mainly density-density Hamiltonians

– Average perturbation order

• CT-HYB: series in the hybridization function

– Good at low temperatures, strong coupling

– Can treat generic Hamiltonians

– Hard to treat many orbitals

– Average perturbation order is the kinetic energy

CT-INT versus CT-HYB



• Pros:

– Faster than earlier algorithms like Hirsch-Fye

– Monte Carlo ⇒ can easily be parallelized

– Flexible Hamiltonians

– Good scaling with number of orbitals if density-density

• Limitations:

– Many orbitals difficult with generic Hamiltonian

– They are in imaginary time, so one needs to do analytical continuation, and 
this is a very delicate procedure!

– Note: some real-time algorithms have been developed

– Sign problem

Pros and cons of the CT-QMC algorithms



• Continuous-time quantum Monte Carlo algorithms have allowed for progress in 
computing the properties of strongly-correlated systems

– Lower temperatures

– Generic Hamiltonians, new approaches (e.g cluster DMFT, …)

– Larger number of orbitals / sites 

• The idea of the algorithms is to sample stochastically the diagrams of a series 
expansion of the partition function  

• According to one’s need, different expansions can be used  

• There are still limitations (sign problem, speed, …) and more work has to be done!

Summary


