We briefly discuss the simplest integration of a function from an evaluation of the integrand at equally spaced points.
We want to integrate $f(x)$ in the interval $[a,b]$ with $N$ points, $\Delta = (b-a)/N$.
A method of order $k$ has an error $\sim 1 / N^k$.
For example, Simpson's method is order $k=4$.
This is OK in 1 dimension. But what about $d$ dimensions?
\begin{equation*} I = \int_{\Omega} d^d x\, f(\mathbf{x}) = \int dx_1 \int dx_2 \cdots \int dx_d\, f(\mathbf{x}). \end{equation*}
We need $M$ points in every dimension for a total of $N = M^d$ points.
The error $\sim 1/M^k$.
Let's take our pebbles: every throw is described by a random variable $x_i$
\begin{equation*} \langle x_i \rangle = \frac{\pi}{4} \cdot 4 + \left( 1 - \frac{\pi}{4} \right) \cdot 0 = \pi \qquad \langle x^2_i \rangle = 4\pi \qquad \sigma = \sqrt{4\pi-\pi^2} \end{equation*}
Empirical average $X$
\begin{equation*} X = \frac{1}{N} \sum_{i=1}^N x_i \qquad \langle X \rangle = \frac{1}{N} \sum_{i=1}^N \langle x_i \rangle = \pi \end{equation*}
What is the standart deviation on the empirical average?
\begin{equation*} \langle X^2 \rangle - \langle X \rangle^2 = \frac{1}{N^2} \sum_{i,j=1}^N \langle x_i x_j \rangle - \frac{1}{N^2} \sum_{i,j} \langle x_i \rangle \langle x_j \rangle = \frac{1}{N} \sigma^2 \Rightarrow \quad \boxed{\sigma_X = \frac{\sigma}{\sqrt{N}}} \end{equation*}